
CSE 451: Operating Systems

Winter 2026

Module 7

Synchronization

Gary Kimura

What’s to come

• Synchronization
– Monday, define and provide motivation for

synchronization, and look at fundamental locking
primitives

– Wednesday, advanced synchronization strategies

– Friday, Pipes and locking in Windows

– Possibly spill over into Monday of next week

• Threads (kernel and user level)

1/28/2026 2

3

Temporal relations

• Instructions executed by a single thread are totally
ordered
– A < B < C < …

• Absent synchronization, instructions executed by
distinct threads must be considered unordered /
simultaneous
– Not X < X’, and not X’ < X

4

Example: In the beginning...
main()

A

B

pthread_create()

A'

foo()

C

B'

• A < B < C
• A' < B'
• A < A'
• C == A'
• C == B'

Y-axis is “time.”

Could be one CPU, could
be multiple CPUs (cores).

Example

5

Critical Sections / Mutual Exclusion

• Sequences of instructions that may get incorrect
results if executed simultaneously are called critical
sections

• (We also use the term race condition to refer to a
situation in which the results depend on timing)

• Mutual exclusion means “not simultaneous”
– A < B or B < A
– We don’t care which

• Forcing mutual exclusion between two critical section
executions is sufficient to ensure correct execution –
guarantees ordering

• One way to guarantee mutually exclusive execution
is using locks

6

Critical sections

Possibly incorrect Correct Correct

T1 T2 T1 T2 T1 T2

is the “happens-before” relation

Critical sections

7

When do critical sections arise?

• One common pattern:
– read-modify-write of

– a shared value (variable)

– in code that can be executed concurrently

(Note: There may be only one copy of the code (e.g., a
procedure), but it can be executed by more than one thread
at a time)

• Shared variable:
– Globals and heap-allocated variables

– NOT local variables (which are on the stack)

(Note: Never give a reference to a stack-allocated (local)
variable to another thread, unless you’re superhumanly
careful …)

8

Example: buffer management

• Threads cooperate in multithreaded programs
– to share resources, access shared data structures

• e.g., threads accessing a memory cache in a web server

– also, to coordinate their execution
• e.g., a disk reader thread hands off blocks to a network writer

thread through a circular buffer

disk
reader
thread

network
writer
thread

circular
buffer

9

Example: shared bank account

• Suppose we have to implement a function to
withdraw money from a bank account:

int withdraw(account, amount) {

int balance = get_balance(account); // read

balance -= amount; // modify

put_balance(account, balance); // write

spit out cash;

}

• Now suppose that you and your partner share a bank
account with a balance of $100.00
– what happens if you both go to separate ATM machines, and

simultaneously withdraw $10.00 from the account?

10

• Assume the bank’s application is multi-threaded

• A random thread is assigned a transaction when that
transaction is submitted

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

11

Interleaved schedules

• The problem is that the execution of the two threads
can be interleaved, assuming preemptive scheduling:

• What’s the account balance after this sequence?
– who’s happy, the bank or you?

• How often is this sequence likely to occur?

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

put_balance(account, balance);

spit out cash;

Execution sequence
as seen by CPU

context switch

context switch

12

• Which interleavings are ok? Which are not?

Other Execution Orders

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

13

int xfer(from, to, amt) {

withdraw(from, amt);

deposit(to, amt);

}

How About Now?

int xfer(from, to, amt) {

withdraw(from, amt);

deposit(to, amt);

}

• Morals:
– Interleavings are hard to reason about

• We make lots of mistakes

• Control-flow analysis is hard for tools to get right

– Identifying critical sections and ensuring mutually exclusive
access is … “easier”

14

i++;

Another example

i++;

15

Correct critical section requirements

• Correct critical sections have the following
requirements
– mutual exclusion

• at most one thread is in the critical section

– progress
• if thread T is outside the critical section, then T cannot prevent

thread S from entering the critical section

– bounded waiting (no starvation)
• if thread T is waiting on the critical section, then T will

eventually enter the critical section
– assumes threads eventually leave critical sections

– performance
• the overhead of entering and exiting the critical section is small

with respect to the work being done within it

16

Mechanisms for building critical sections

• Spinlocks
– primitive, minimal semantics; used to build others

• Semaphores (and non-spinning locks)
– basic, easy to get the hang of, somewhat hard to program

with

• Monitors
– higher level, requires language support, implicit operations

– easier to program with; Java “synchronized()” as an
example

• Messages
– simple model of communication and synchronization based

on (atomic) transfer of data across a channel

– direct application to distributed systems

17

Locks

• A lock is a memory object with two operations:
– acquire(): obtain the right to enter the critical section

– release(): give up the right to be in the critical section

• acquire() prevents progress of the thread until the
lock can be acquired

• (Note: terminology varies: acquire/release,
lock/unlock)

18

Locks: Example execution

lock()

unlock()

lock()

unlock()

Two choices:
• Spin
• Block
• (Spin-then-block)

Locks: Example

19

Acquire/Release

• Threads pair up calls to acquire() and release()
– between acquire()and release(), the thread holds the

lock
– acquire() does not return until the caller “owns” (holds)

the lock
• at most one thread can hold a lock at a time

– What happens if the calls aren’t paired (I acquire, but neglect
to release)?

– What happens if the two threads acquire different locks (I
think that access to a particular shared data structure is
mediated by lock A, and you think it’s mediated by lock B)?

• (granularity of locking)

20

Using locks

• What happens when green tries to acquire the lock?

int withdraw(account, amount) {

acquire(lock);

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n

spit out cash;

21

Roadmap …

• Where we are eventually going:
– The OS and/or the user-level thread package will provide

some sort of efficient primitive for user programs to utilize in
achieving mutual exclusion (for example, locks or
semaphores, used with condition variables)

– There may be higher-level constructs provided by a
programming language to help you get it right (for example,
monitors – which also utilize condition variables)

• But somewhere, underneath it all, there needs to be
a way to achieve “hardware” mutual exclusion (for
example, test-and-set used to implement spinlocks)
– This mechanism will not be utilized by user programs

– But it will be utilized in implementing what user programs
see

22

Spinlocks

• How do we implement spinlocks? Here’s one attempt:

• Why doesn’t this work?
– where is the race condition?

struct lock_t {

int held = 0;

}

void acquire(lock) {

while (lock->held);

lock->held = 1;

}

void release(lock) {

lock->held = 0;

}

the caller “busy-waits”,
or spins, for lock to be
released  hence spinlock

23

Implementing spinlocks (cont.)

• Problem is that implementation of spinlocks has
critical sections, too!
– the acquire/release must be atomic

• atomic == executes as though it could not be interrupted

• code that executes “all or nothing”

• Need help from the hardware
– atomic instructions

• test-and-set, compare-and-swap, …

– disable/reenable interrupts
• to prevent context switches

24

Spinlocks redux: Hardware Test-and-Set

• CPU provides the following as one atomic instruction:

• Remember, this is a single atomic instruction …

bool test_and_set(bool *flag) {

bool old = *flag;

*flag = True;

return old;

}

25

Compare and Exchange

• Compare and Exchange replaces Test and Set

• It takes three parameters
– Pointer to a memory location

– Comparand

– Value

• Atomically
– If the Comparand is equal to what is stored in the memory location then

replace it with the new Value and return what was previously stored in
the memory location

– A gotcha with multiprocessor systems is the need to restrict access to
the memory location while doing the operation.

int Cmpxchg(int *Ptr, int Comparand, int NewValue) {
int OldValue = *Ptr;
if (OldValue == Comparand) *Ptr = NewValue;
return OldValue;

}

26

Implementing spinlocks using CMPXCHG

• So, to fix our broken spinlocks:

– mutual exclusion? (at most one thread in the critical section)

– progress? (T outside cannot prevent S from entering)

– bounded waiting? (waiting T will eventually enter)

– performance? (low overhead (modulo the spinning part …))

struct lock {

int held = 0;

}

void acquire(lock) {

while(cmpxchg(&lock->held, 0, MyID));

}

void release(lock) {

lock->held = 0;

}

27

Reminder of use …

• How does a thread blocked on an “acquire” (that is,
stuck in a test-and-set loop) yield the CPU?
– calls yield() (spin-then-block)

– there’s an involuntary context switch (e.g., timer interrupt)

int withdraw(account, amount) {

acquire(lock);

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n

spit out cash;

28

Problems with spinlocks

• Spinlocks work, but are wasteful!
– if a thread is spinning on a lock, the thread holding the lock

cannot make progress
• You’ll spin for a scheduling quantum

• Therefore, only want spinlocks as primitives to build
higher-level synchronization constructs
– Why is this okay?

• We’ll see later how to build blocking locks
– But blocking locks have more overhead so it is sometimes

cheaper to spin

29

Another approach: Disabling interrupts

struct lock {

}

void acquire(lock) {

cli(); // disable interrupts

}

void release(lock) {

sti(); // reenable interrupts

}

30

Problems with disabling interrupts

• Only available to the kernel
– Can’t allow user-level to disable interrupts!

• Insufficient on a multiprocessor
– Each processor has its own interrupt mechanism

• “Long” periods with interrupts disabled can wreak
havoc with devices

• Just as with spinlocks, you only want to use disabling
of interrupts to build higher-level synchronization
constructs

31

Race conditions

• Informally, we say a program has a race condition
(aka “data race”) if the result of an executing depends
on timing
– i.e., is non-deterministic

• Typical symptoms
– I run it on the same data, and sometimes it prints 0 and

sometimes it prints 4

– I run it on the same data, and sometimes it prints 0 and
sometimes it crashes

• Do we want A before B, or B before A?
– It is synchronized but the results may not be what we want

• So locks in general do not address race conditions

32

Quick Recap

 Most basic locking primitives are acquire() and release()
 Most common Hardware support for doing locks

o Fiddle with interrupts, Only works for the kernel and not
multiprocessors (so pretty irrelevant)

o Storing something in memory, The idea is that the last writer
wins.

 Spinlocks
o The most rudimentary building block used to

implement higher level locks
o Easy to implement but wasteful if held too long. Why?

Because other threads will end up spinning instead of
sleeping for the lock

 Now onto higher level synchronization constructs

33

Summary

• Synchronization introduces temporal ordering
• Adding synchronization can eliminate races
• Synchronization can be provided by locks,

semaphores, monitors, messages …
• Spinlocks are the lowest-level mechanism

– primitive in terms of semantics – error-prone
– implemented by spin-waiting (crude) or by disabling

interrupts (also crude, and can only be done in the kernel)

• In our next exciting episode …
– semaphores are a slightly higher level abstraction

• Importantly, they are implemented by blocking, not spinning
• Locks can also be implemented in this way

– monitors are significantly higher level
• utilize programming language support to reduce errors

