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What’s to come

• Synchronization
– Monday, define and provide motivation for 

synchronization, and look at fundamental locking 
primitives

– Wednesday, advanced synchronization strategies

– Friday, Pipes and locking in Windows

– Possibly spill over into Monday of next week

• Threads (kernel and user level)
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Temporal relations

• Instructions executed by a single thread are totally 
ordered
– A < B < C < …

• Absent synchronization, instructions executed by 
distinct threads must be considered unordered / 
simultaneous
– Not X < X’, and not X’ < X
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Example: In the beginning...
main()

A

B

pthread_create()

A'

foo()

C

B'

• A < B < C
• A' < B'
• A < A'
• C == A'
• C == B'

Y-axis is “time.”

Could be one CPU, could 
be multiple CPUs (cores).

Example
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Critical Sections / Mutual Exclusion

• Sequences of instructions that may get incorrect 
results if executed simultaneously are called critical 
sections

• (We also use the term race condition to refer to a 
situation in which the results depend on timing)

• Mutual exclusion means “not simultaneous”
– A < B or B < A
– We don’t care which

• Forcing mutual exclusion between two critical section 
executions is sufficient to ensure correct execution –
guarantees ordering

• One way to guarantee mutually exclusive execution 
is using locks



6

Critical sections

Possibly incorrect Correct Correct

T1 T2 T1 T2 T1 T2

is the “happens-before” relation

Critical sections
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When do critical sections arise?

• One common pattern:
– read-modify-write of

– a shared value (variable)

– in code that can be executed concurrently

(Note:  There may be only one copy of the code (e.g., a 
procedure), but it can be executed by more than one thread 
at a time)

• Shared variable:
– Globals and heap-allocated variables

– NOT local variables (which are on the stack)

(Note:  Never give a reference to a stack-allocated (local) 
variable to another thread, unless you’re superhumanly 
careful …)
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Example:  buffer management

• Threads cooperate in multithreaded programs
– to share resources, access shared data structures

• e.g., threads accessing a memory cache in a web server

– also, to coordinate their execution
• e.g., a disk reader thread hands off blocks to a network writer 

thread through a circular buffer

disk 
reader 
thread

network 
writer 
thread

circular 
buffer
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Example:  shared bank account

• Suppose we have to implement a function to 
withdraw money from a bank account:

int withdraw(account, amount) {

int balance = get_balance(account);  // read

balance -= amount; // modify

put_balance(account, balance); // write

spit out cash;

}

• Now suppose that you and your partner share a bank 
account with a balance of $100.00
– what happens if you both go to separate ATM machines, and 

simultaneously withdraw $10.00 from the account?
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• Assume the bank’s application is multi-threaded

• A random thread is assigned a transaction when that 
transaction is submitted

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}
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Interleaved schedules

• The problem is that the execution of the two threads 
can be interleaved, assuming preemptive scheduling:

• What’s the account balance after this sequence?
– who’s happy, the bank or you? 

• How often is this sequence likely to occur?

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

put_balance(account, balance);

spit out cash;

Execution sequence
as seen by CPU

context switch

context switch
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• Which interleavings are ok?  Which are not?

Other Execution Orders

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}
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int xfer(from, to, amt) {

withdraw( from, amt );

deposit( to, amt );

}

How About Now?

int xfer(from, to, amt) {

withdraw( from, amt );

deposit( to, amt );

}

• Morals:
– Interleavings are hard to reason about

• We make lots of mistakes

• Control-flow analysis is hard for tools to get right

– Identifying critical sections and ensuring mutually exclusive 
access is … “easier”
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i++;

Another example

i++;
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Correct critical section requirements

• Correct critical sections have the following 
requirements
– mutual exclusion

• at most one thread is in the critical section

– progress
• if thread T is outside the critical section, then T cannot prevent 

thread S from entering the critical section

– bounded waiting (no starvation)
• if thread T is waiting on the critical section, then T will 

eventually enter the critical section
– assumes threads eventually leave critical sections

– performance
• the overhead of entering and exiting the critical section is small 

with respect to the work being done within it
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Mechanisms for building critical sections

• Spinlocks
– primitive, minimal semantics; used to build others

• Semaphores (and non-spinning locks)
– basic, easy to get the hang of, somewhat hard to program 

with

• Monitors
– higher level, requires language support, implicit operations

– easier to program with; Java “synchronized()” as an 
example

• Messages
– simple model of communication and synchronization based 

on (atomic) transfer of data across a channel

– direct application to distributed systems
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Locks

• A lock is a memory object with two operations:
– acquire(): obtain the right to enter the critical section

– release(): give up the right to be in the critical section

• acquire() prevents progress of the thread until the 
lock can be acquired

• (Note:  terminology varies:  acquire/release, 
lock/unlock)
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Locks: Example execution

lock()

unlock()

lock()

unlock()

Two choices:
• Spin
• Block
• (Spin-then-block)

Locks:  Example
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Acquire/Release

• Threads pair up calls to acquire() and release()
– between acquire()and release(), the thread holds the 

lock
– acquire() does not return until the caller “owns” (holds) 

the lock
• at most one thread can hold a lock at a time

– What happens if the calls aren’t paired (I acquire, but neglect 
to release)?

– What happens if the two threads acquire different locks (I 
think that access to a particular shared data structure is 
mediated by lock A, and you think it’s mediated by lock B)?

• (granularity of locking)
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Using locks

• What happens when green tries to acquire the lock?

int withdraw(account, amount) {

acquire(lock);

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n

spit out cash;
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Roadmap …

• Where we are eventually going:
– The OS and/or the user-level thread package will provide 

some sort of efficient primitive for user programs to utilize in 
achieving mutual exclusion (for example, locks or 
semaphores, used with condition variables)

– There may be higher-level constructs provided by a 
programming language to help you get it right (for example, 
monitors – which also utilize condition variables)

• But somewhere, underneath it all, there needs to be 
a way to achieve “hardware” mutual exclusion (for 
example, test-and-set used to implement spinlocks)
– This mechanism will not be utilized by user programs

– But it will be utilized in implementing what user programs 
see
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Spinlocks

• How do we implement spinlocks?  Here’s one attempt:

• Why doesn’t this work?
– where is the race condition?

struct lock_t {

int held = 0;

}

void acquire(lock) {

while (lock->held);

lock->held = 1;

}

void release(lock) {

lock->held = 0;

}

the caller “busy-waits”,
or spins, for lock to be
released  hence spinlock
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Implementing spinlocks (cont.)

• Problem is that implementation of spinlocks has 
critical sections, too!
– the acquire/release must be atomic

• atomic == executes as though it could not be interrupted

• code that executes “all or nothing”

• Need help from the hardware
– atomic instructions

• test-and-set, compare-and-swap, …

– disable/reenable interrupts
• to prevent context switches
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Spinlocks redux: Hardware Test-and-Set

• CPU provides the following as one atomic instruction:

• Remember, this is a single atomic instruction …

bool test_and_set(bool *flag) {

bool old = *flag;

*flag = True;

return old;

}
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Compare and Exchange

• Compare and Exchange replaces Test and Set

• It takes three parameters
– Pointer to a memory location

– Comparand

– Value

• Atomically 
– If the Comparand is equal to what is stored in the memory location then 

replace it with the new Value and return what was previously stored in 
the memory location

– A gotcha with multiprocessor systems is the need to restrict access to 
the memory location while doing the operation.

int Cmpxchg(int *Ptr, int Comparand, int NewValue) {
int OldValue = *Ptr;
if (OldValue == Comparand) *Ptr = NewValue;
return OldValue;

}
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Implementing spinlocks using CMPXCHG

• So, to fix our broken spinlocks:

– mutual exclusion? (at most one thread in the critical section)

– progress? (T outside cannot prevent S from entering)

– bounded waiting? (waiting T will eventually enter)

– performance? (low overhead (modulo the spinning part …))

struct lock {

int held = 0;

}

void acquire(lock) {

while(cmpxchg(&lock->held, 0, MyID));

}

void release(lock) {

lock->held = 0;

}
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Reminder of use …

• How does a thread blocked on an “acquire” (that is, 
stuck in a test-and-set loop) yield the CPU?
– calls yield( ) (spin-then-block)

– there’s an involuntary context switch (e.g., timer interrupt)

int withdraw(account, amount) {

acquire(lock);

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n

spit out cash;
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Problems with spinlocks

• Spinlocks work, but are wasteful!
– if a thread is spinning on a lock, the thread holding the lock 

cannot make progress
• You’ll spin for a scheduling quantum

• Therefore, only want spinlocks as primitives to build 
higher-level synchronization constructs
– Why is this okay?

• We’ll see later how to build blocking locks
– But blocking locks have more overhead so it is sometimes 

cheaper to spin
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Another approach:  Disabling interrupts

struct lock {

}

void acquire(lock) {

cli();   // disable interrupts

}

void release(lock) {

sti();    // reenable interrupts

}
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Problems with disabling interrupts

• Only available to the kernel
– Can’t allow user-level to disable interrupts!

• Insufficient on a multiprocessor
– Each processor has its own interrupt mechanism

• “Long” periods with interrupts disabled can wreak 
havoc with devices

• Just as with spinlocks, you only want to use disabling 
of interrupts to build higher-level synchronization 
constructs
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Race conditions

• Informally, we say a program has a race condition
(aka “data race”) if the result of an executing depends 
on timing
– i.e., is non-deterministic

• Typical symptoms
– I run it on the same data, and sometimes it prints 0 and 

sometimes it prints 4

– I run it on the same data, and sometimes it prints 0 and 
sometimes it crashes

• Do we want A before B, or B before A?
– It is synchronized but the results may not be what we want

• So locks in general do not address race conditions
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Quick Recap

 Most basic locking primitives are acquire() and release()
 Most common Hardware support for doing locks 

o Fiddle with interrupts, Only works for the kernel and not 
multiprocessors (so pretty irrelevant)

o Storing something in memory, The idea is that the last writer 
wins.

 Spinlocks
o The most rudimentary building block used to 

implement higher level locks
o Easy to implement but wasteful if held too long.  Why? 

Because other threads will end up spinning instead of 
sleeping for the lock

 Now onto higher level synchronization constructs
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Summary

• Synchronization introduces temporal ordering
• Adding synchronization can eliminate races
• Synchronization can be provided by locks, 

semaphores, monitors, messages …
• Spinlocks are the lowest-level mechanism

– primitive in terms of semantics – error-prone
– implemented by spin-waiting (crude) or by disabling 

interrupts (also crude, and can only be done in the kernel)

• In our next exciting episode …
– semaphores are a slightly higher level abstraction

• Importantly, they are implemented by blocking, not spinning
• Locks can also be implemented in this way

– monitors are significantly higher level
• utilize programming language support to reduce errors


